Surgical Correction of Presbyopia

Omar E. Awad MD, FACS

Presbyopia definition

- The eye condition in which, while corrected for distance, due to age related factors, the affected person is unable to see clearly at short distances.
- The eye condition of insufficient accommodative amplitude for clear near vision when the eye is corrected for distance.
- Presbyopia, while correctable by spectacles or contact lenses, presents a significant functional disability/handicap to the individual, and like in myopia, hyperopia and astigmatism, surgical correction is reasonable in select individuals.

Incidence and Prevalence

- Universal after age 45
- 40% of US population
- 110-120 million people
- 24% myopic (>-1.00)
- 26% hyperopic (>+1.00)
- 50% emmetropic (+0.875 to -0.875)
- 30% also with astigmatism over 1 diopter

Key Moments in History of Presbyopia

- Aristotle (384 – 322 BC)
 - First to use term “PRESBYTES” as reference to those suffering eye strain
- Sturm (1697)
 - Coins the term “presbyopia”
 - “Presby” = elderly and “opos” = eye
- Young (1801), Helmholtz (1867)
 - Hypothesized that accommodation resulted from a change in crystalline lens shape and proposed the mechanism of accommodation that is most widely accepted
- Donders (1864), Duane (1915)
 - Developed classical curves describing the decrease in monocular accommodative amplitude with age

Important Concepts

- Accommodation –
 - The eyes dynamic ability to focus under CNS control through a range of power as the distance to the object being observed varies
 - Usually measured in diopters or an accommodative amplitude
- Pseudo-accommodation – a non-dynamic increased depth of focus in an eye, not under CNS control, that is generated by an anatomic feature, such as:
 - Small pupil size
 - Aspheric or multifocal optics
 - Astigmatism
Higher order aberrations
- Depth of focus – The range in distance (or diopters) over which an eye or optical system can see a specific target (usually 20/40 and J3)
- Depth of focus = pseudo-accomodation and accomodation
 - * also impacted by lighting and target contrast

Optical Principles that can be Utilized to Increase Depth of Focus / Near Acuity on an Individual eye
- Create multifocal optical system
- Increase higher order aberrations (spherical aberration, coma)
- Create a “hyperprolate” optic
- Utilize hyperfocality
- Induce mild astigmatism
- Small diameter aperture optics
- Increase the corneas refractive index
- Neuroadaptation training

Optical Principles that can be utilized to increase depth of focus of the visual system (in order of current preference by contact lens patients)
- Blended vision (less than or equal to 1.50 diopters of anisometropia). Fusion retained.
- Monovision (greater than 1.50 diopters of anisometropia). Fusion usually lost.
- Modified monovision (one eye set for distance, other eye utilizing one of the optical principles for increasing Depth of Focus)

Neuro-adaptation – all approaches require some neuro-adaptation
- neuroadaptation phases
 - Early phase
 - Late phase
- Additional important phenomena
 - Binocular rivalry
 - Suppression
 - Binocular summation

Monovision Blended Vision
- Most popular approach to presbyopia worldwide
- Gives highest quality of vision
- Aspheric IOL or Custom Ablation
- Visual target
 - Distance eye : plano to -0.50
 - Near eye : -1.25 to -1.75
- Contact lens trial is not predictive of success (dislike of CL experiences)
- Issues
 - Reduced binocular summation
 - Reduced stereopsis
 - Anisekonia (4-6%)
5-10% do not neuroadapt

Multifocal Optics
- Second most popular approach to presbyopia surgery worldwide
- Multifocal optics
 - Refractive
 - Diffractive
 - Hybrid
- Multifocal optics
 - Distance dominant
 - Near dominant
 - Symmetrical

Multifocal optics are often PUPIL DEPENDENT in their performance

Issues with multifocal optics
- Reduced contrast sensitivity (25%)
- Night vision symptoms – glare and halo
- Color distortion
- Pupil dependence
- Reduced “quality of vision”
- Concerns with ocular co-morbidities
 - Age-related macular degeneration
 - Glaucoma
 - Corneal dystrophy (Fuchs)
 - Ocular Surface Disease

Reduced quality of vision issues are additive

Multifocal LASIK
- 3 general methods for Presbyopic Multifocal LASIK (none are FDA approved in USA)
 - Central Add – increases central near add
 - Peripheral Add – increases the peripheral add for near
 - Translational – creates an aspheric surface to increase depth of focus

INTRACOR – Technolas Femtec femtosecond laser
- Creates 5 concentric cylinder shaped intrastromal femtosecond ablations which steepen the central cornea
- Mild hyperopes

Flexivue MicroLens
- Disc shaped bifocal refractive power
- Lens implanted into stroma of cornea of non-dominant eye, inside a corneal pocket using a femtosecond laser

Raindrop by Revision Optics
- 1.5 – 2 mm diameter
- Microporous hydrogel
- Biocompatible and stable
- Easily implanted under LASIK flap
- Center near – changed anterior corneal shape
Exchangeable, removable

Acufocus Corneal Inlay
- 3.8 mm diameter with 1.6 mm aperture
- 5 µ thick
- Microperforations for nutrient transit
- Treats broad spectrum of patients – emmetropes, ametropes, post-LASIK, monofocal pseudophakes

Accommodation IOLs
- 3rd most common approach to lenticular refractive surgery
- Mechanism of action is multifactorial – includes increased depth of focus benefits of pseudo-accommodation and accommodation
- Quality of vision issues are significantly less than in a Multifocal IOL, but more than with an aspheric monofocal IOL

Issues
- Near vision outcomes are variable
- Surgical technique and post-operative management requires some learning
- Capsular Fibrosis performance in bag – elasticity dependent

Summary
- Monovision / blended vision will remain an attractive option
- Multifocal Optic technology is maturing
- Accomodative IOL development is less mature than multifocal, but is advancing