Management of Keratoconus
Walter T. Parker, MD
Minnesota Eye Consultants

Outline:

- Keratoconus
 - Epidemiology
 - Genetics
- Diagnosis
- Medical Management
- Surgical Management
 - Cross-linking
 - Intacs/CK
 - PK
 - IEK
 - DALK

Keratoconus Background

- Noninflammatory ectatic degeneration
 - Corneal findings include:
 - Paracentral cone
 - Progressive thinning
 - Irregular astigmatism
 - Scarring
 - Onset at puberty with progression through 30's
 - Asymmetrically bilateral
- Prevalence 54.5/100,000 people
 - True rates hard to determine due to varying definitions of disease along a spectrum from forme fruste keratoconus, pellucid marginal, and true keratoconus
 - No gender/race predilection
 - More common in youth
- Etiology
 - Multiple theories, likely some combination of all
 - Connective tissue disorder
 - Is known to be associated with Ehlers-Danlos, Marfans, and others
 - Enzymatic defect
 - Especially protease, tear lysozyme, lipid peroxidase, or nitric oxide
 - Possibly cause increased oxidative stress leading to broken collagen crosslinks and weakened corneas
 - Environmental/mechanical
 - Eye rubbing known to increase risk
 - Possible link between rubbing leading to trauma and inflammation
 - Genetics
 - Complex and poorly defined genetics
 - 6-20% of cases with known family history, but some studies suggest up to 60% of cases have family members with some topographical abnormality
Still most cases considered isolated

Diagnosis

- Symptoms:
 - Early cases easily missed as often asymptomatic at first
 - Later cases have decreased vision
 - progressive refractive change (increasing myopia and cylinder)
 - Inability to correct to 20/20
- Signs:
 - Scissoring of reflex on retinoscopy
 - Charleux oil drop sign
 - Fleisher ring
 - Munson’s sign
 - Rizzuti phenomenon
 - Vogt’s Striae
 - Stromal thinning, typically at apex
 - Scarring (later finding)
 - Subepithelial (breaks in Bowman’s)
 - Deep stromal (breaks in Descemet’s membrane, AKA hydrops)
- Testing
 - Topography
 - Highly sensitive, useful for monitoring progression
 - Topographic findings:
 - Focal area of increased corneal power
 - Inferior/superior power asymmetry
 - Skewed steep axis
 - Tomography
 - More sensitive than topography, gives information on posterior cornea and pachymetry that topography alone misses
 - Tomographic findings:
 - Posterior float (very early sign, not seen on topography)
 - Anterior float
 - Wavefront
 - Measures higher order aberrations
 - Keratoconus often has increased coma and spherical aberration
Treatment - Medical:

- Early/mild cases can be corrected with glasses
- Mild-to-moderate cases with increased irregular astigmatism need rigid gas permeable lenses
 - RGPs can increase scarring (if flat fit) or increase rate of progression (if tight fit). Fit is important!

Treatment - Surgical:

- Corneal cross-linking newest treatment option for all except the most end-stage cases
 - Does not reverse changes to a significant degree, but does prevent progression
 - Early treatment leads to better outcomes
 - Goal of treatment to increase strength of cross-links between collagen in cornea to prevent future ectasia
 - Concept has been around since 1990’s, treatment under investing since later 90’s early 2000’s, FDA approval in 2016!
 - Uses a photosensitizing agent (riboflavin) soaked onto cornea. Then expose cornea to UVA light (365nm wavelength) and riboflavin will increase cross-links
 - Essentially 100% effective at halting progression
 - Two procedure options: Epithelium-off (FDA approved) vs epithelium-on (still investigational)
- Implantable intraconal ring segments (aka ICRS or INTACS)
 - PMMA rings that are inserted into laser cut channel in the stroma
 - Approved for treatment of low myopia (flatten the cornea and thus reduce myopia)
 - Have been approved for use in KCN since 2004 under a humanitarian device exemption from FDA
 - Do not change disease progression, may flatten cornea, reduce I/A, reduce myopia, or improve contact lens fit
 - Conductive keratoplasty
 - A radiofrequency probe that causes focal collagen shrinkage
• Actually, increases corneal steepening, FDA approved for low hyperopia
• In KCN used to steepen flat axis to improve I/A and move apex of cone centrally
• Does not alter disease progression
• Often combined with INTACS
 o Combo INTACS/CK for mild to moderate cases with borderline contact lens tolerance

○ Penetrating keratoplasty
 ▪ Goal standard surgical treatment
 ▪ ~20% life-time risk in KCN population of needing a PK
 ▪ Indications
 • RGP intolerance
 • Scar
 • Thinning/perforation
 ▪ 80% 5-yr survival of graft (KCN patients do better than most with PKs)
 ▪ Younger patients and those with more ectasia are more likely to progress to needing PK
 ▪ PK enhancements
 • Deep Anterior Lamellar Keratoplasty (DALK):
 o Maintains original host cornea’s Descemet’s and endothelial layers
 o Less rejection and endothelial cell loss
 o Technically more challenging, may need to convert to standard PK intraoperatively (15-40% conversion rate)
 • Intralase Enabled Keratoplasty (IEK)
 o Utilizes femtosecond laser to cut host and donor corneas
 o Allows for more precise match between tissue
 ▪ Less astigmatism, quicker visual recovery