Effect of BMI-discordant abdominal tissue thickness on fracture probability: a registry-based study Journal Article uri icon
Overview
abstract
  • FRAX, which is used to assess fracture probability, considers body mass index (BMI), but BMI may not reflect individual variation in body composition and distribution. We examined the effect of BMI-discordant abdominal thickness on FRAX-derived fracture probability for major osteoporotic fracture (MOF) and hip fracture. We studied 73,105 individuals, mean age 64.2 years. During mean 8.7 years, 7048 (9.6%) individuals sustained incident MOF, including 2155 (3.0%) hip fractures. We defined abdominal thickness index (ATI) as the difference between abdominal thickness measured by dual-energy X-ray absorptiometry (DXA) and thickness predicted by BMI using sex-stratified regression. ATI was categorized from lower (<-2 cm, -2 to -1 cm) to higher (1-2 cm, >+2 cm) with referent around zero (-1 to +1 cm). Adjusted for FRAX probability, increasing ATI was associated with incident MOF and hip fracture (p < 0.001). For the highest ATI category, MOF risk was increased (hazard ratio [HR] = 1.23, 95% confidence interval [CI] 1.12-1.35) independent of FRAX probability. Similar findings were noted for hip fracture probability (HR = 1.28, 95% CI 1.09-1.51). There was significant age-interaction with much larger effects before age 65 years (HR = 1.44, 95% CI 1.23-1.69 for MOF; 2.29, 95% CI 1.65-3.18 for hip fracture). In contrast, for the subset of individuals with diabetes, there was also increased risk for those in the lowest ATI category (HR = 1.73, 95% CI 1.12-2.65 for MOF; 2.81, 95% CI 1.59-4.97 for hip fracture). Calibration plots across ATI categories demonstrated deviation from the line of identity in women (calibration slope 2.26 for MOF, 2.83 for hip fracture). An effect of ATI was not found in men, but this was inconclusive as the sex-interaction terms did not show significant effect modification. In conclusion, these data support the need to investigate increased abdominal thickness beyond that predicted by BMI and sex as a FRAX-independent risk factor for fracture. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).

  • Link to Article
    publication date
  • 2023
  • published in
    Research
    keywords
  • Body Mass Index
  • Fractures
  • Hip
  • Osteoporosis
  • Registries
  • Risk Assessment
  • Risk Factors
  • Additional Document Info
    volume
  • 38
  • issue
  • 12