Assessing bone mineral density following acute hip fractures: the role of computed tomography attenuation [review] Review uri icon

abstract

  • Objectives: In older patients, bone mineral density (BMD) diminishes with age, increasing susceptibility to femoral neck fractures. Evidence has emerged that patients who should have dual x-ray absorptiometry scans to evaluate their bone health are not doing so. Because computed tomography (CT) attenuation has now been correlated with BMD thresholds relating to osteoporosis, virtually any existing CT scan that includes the L1 vertebra can be used to assess BMD. This study evaluates the utility of CT attenuation in characterizing BMD in patients after femoral neck fractures. Methods: The electronic medical records of adults who presented to a level I trauma center with hip fractures were evaluated for eligibility. Those with a CT scan of the abdomen or other CT scan with a complete view of the L1 vertebra were included. To measure attenuation, a region of interest was selected to include the body of the L1 vertebra in the axial plane and exclude the cortices and posterior venous complex. Results: Of the 589 patients reviewed, 217 met inclusion criteria; 112 were aged 18 to 64, while 105 were =65. Eight (7.1%) patients in the younger cohort had a mean CT attenuation below the 110-HU threshold set for 90% specificity, whereas 31 (29.5%) patients in the older cohort had a mean CT attenuation below this threshold. Using the 160-HU threshold set for 90% sensitivity, 39 (34.8%) patients of the younger cohort and 74 (70%) patients of the older cohort were osteoporotic; all differences in CT attenuation by age were strongly significant (P < .0001). Conclusions: A significantly larger proportion of older patients with hip fractures had osteoporosis, helping validate the utility of CT attenuation in this context. In addition, a large proportion of these patients already had these images available, thus potentially helping limit cost and unnecessary medical investigations.

publication date

  • 2015