Volumetric bone mineral density and failure load of distal limbs predict incident clinical fracture independent HR-pQCT BMD and failure load predicts incident clinical fracture of FRAX and clinical risk factors among older men Journal Article uri icon
Overview
abstract
  • Our objective was to determine the associations of peripheral bone strength and microarchitecture with incident clinical and major osteoporotic fracture among older men after adjusting for major clinical risk factors. We used a prospective cohort study design with data from 1794 men (mean age 84.4 years) in the Osteoporotic Fractures in Men (MrOS) study. Eligible men attended the year 14 visit, had high-resolution peripheral quantitative computed tomography (HR-pQCT) scans of the distal radius and distal or diaphyseal tibia, DXA measured BMD, and were followed for mean 1.7 years for incident fracture. Failure load was estimated using finite element analysis. We used Cox proportional hazards models with standardized HR-pQCT parameters as exposure variables. Primary outcome was clinical fracture (n = 108). Covariates included either Fracture Risk Assessment Tool (FRAX) major osteoporotic fracture probability calculated with BMD (FRAX-BMD), or individual clinical risk factors (CRF) including age, total hip BMD, race, falls, and prevalent fracture after age 50 years. Lower failure load was associated with higher risk of incident clinical fracture and incident major osteoporotic fracture. For clinical fracture with FRAX-BMD adjustment, the associations ranged from hazard ratio (HR) 1.58 (95% CI, 1.25 to 2.01) to 2.06 (95% CI, 1.60 to 2.66) per SD lower failure load at the diaphyseal tibia and distal radius. These associations were attenuated after adjustment for individual CRFs, but remained significant at the distal sites. Associations of volumetric BMD with these outcomes were similar to those for failure load. At the distal radius, lower trabecular BMD, number, and thickness, and lower cortical BMD, thickness, and area were all associated with higher risk of clinical fracture, but cortical porosity was not. Among community-dwelling older men, HR-pQCT measures including failure load, volumetric BMD, and microstructure parameters at peripheral sites (particularly distal radius) are robust independent predictors of clinical and major osteoporotic fracture. (c) 2018 American Society for Bone and Mineral Research.

  • Link to Article
    publication date
  • 2018
  • published in
    Research
    keywords
  • Bone Density
  • Bones
  • Fractures
  • Osteoporosis
  • Prospective Studies
  • Radiography
  • Risk Assessment
  • Risk Factors
  • Additional Document Info
    volume
  • 33
  • issue
  • 7