Subacute intranasal administration of tissue plasminogen activator increases functional recovery and axonal remodeling after stroke in rats Journal Article uri icon
  • As a thrombolytic agent, application of recombinant tissue plasminogen activator (tPA) to ischemic stroke is limited by the narrow time window and side effects on brain edema and hemorrhage. This study examined whether tPA, administered by intranasal delivery directly targeting the brain and spinal cord, provides therapeutic benefit during the subacute phase after stroke. Adult male Wistar rats were subjected to permanent right middle cerebral artery occlusion (MCAo). Animals were treated intranasally with saline, 60 mug or 600 mug recombinant human tPA at 7 and 14days after MCAo (n=8/group), respectively. An adhesive-removal test and a foot-fault test were used to monitor functional recovery. Biotinylated dextran amine (BDA) was injected into the left motor cortex to anterogradely label the corticorubral tract (CRT) and the corticospinal tract (CST). Naive rats (n=6) were employed as normal control. Animals were euthanized 8 weeks after stroke. Compared with saline treated animals, significant functional improvements were evident in rats treated with 600 mug tPA (p<0.05), but not in 60 mug tPA treated rats. Furthermore, 600 mug tPA treatment significantly enhanced both CRT and CST sprouting originating from the contralesional cortex into the denervated side of the red nucleus and cervical gray matter compared with control group (p<0.01), respectively. The behavioral outcomes were highly correlated with CRT and CST axonal remodeling. Our data suggest that delayed tPA intranasal treatment provides therapeutic benefits for neurological recovery after stroke by, at least in part, promoting neuronal remodeling in the brain and spinal cord.

  • Link to Article
    publication date
  • 2012
  • published in
  • Animal Studies
  • Drugs and Drug Therapy
  • Intranasal Administration
  • Stroke
  • Additional Document Info
  • 45
  • issue
  • 2